

Improved Orbiting Carbon Observatory-2 (OCO-2) Retrievals Using a BRDF Model for the Surface

Vijay Natraj (Jet Propulsion Laboratory, California Institute of Technology)

Co-Authors

Matthäus Kiel (Caltech)

Aronne Merrelli (University of Wisconsin-Madison/SSEC)

James McDuffie (JPL/Caltech)

Brendan Fisher (JPL/Caltech)

Chris O'Dell (Colorado State University)

David Crisp (JPL/Caltech)

Annmarie Eldering (JPL/Caltech)

Dejian Fu (JPL/Caltech)

Debra Wunch (University of Toronto)

Paul Wennberg (Caltech)

Lukas Mandrake (JPL/Caltech)

13th International Workshop on Greenhouse Gas Measurements from Space June 6, 2017

Retrieved Albedo Correlated With Scattering Angle

Retrieved albedo correlated with scattering angle => BRDF effects?

OCO-2 Measurement Geometry

BRDF Formulation

$$BRDF(/) = [w + s(/ - /_0)]F(r_0, J, k)$$

- w: overall BRDF amplitude [BRDF weight]
- s: slope of BRDF amplitude [BRDF weight slope]
- λ: wavelength
- λ_0 : reference wavelength (where parameters are retrieved)
- F: function describing BRDF shape (RPV kernel)
- ρ_0 : hot spot parameter = 0.05
- θ : asymmetry parameter = -0.1
- *k*: anisotropy parameter = 0.75
- BRDF kernel reduces to Lambertian kernel for certain choice of BRDF shape parameters
- w, s retrieved

RPV Kernel Shape

BRDF Outputs

- w and s converted to more physically meaningful quantities, ρ_w (reflectance) and ρ_s (reflectance slope)
- ρ_w and ρ_s calculated by evaluating the BRDF kernel model at the primary observation geometry
- Reflectance factor equals ratio between reflected radiance and that from pure Lambertian surface at the same geometry
- For no scattering scenario, this is equivalent to a Lambertian albedo
- Consistency between Lambertian albedo used in v7 and effective albedo used in v8

Number of Converged Soundings

Retrieved AOD (Bremen, 9090)

Retrieved AOD (Caltech, 3052)

Retrieved XCO2 (Bremen, 9090)

Retrieved XCO2 (Caltech, 3052)

Retrieved Albedo (Bremen, 9090)

Retrieved Albedo (Caltech, 3052)

Retrieved BRDF Weights (Bremen, 9090)

Retrieved BRDF Weights (Caltech, 3052)

Conclusions

- To-do items from last year implemented
 - √ Re-baseline with new spectroscopic models
 - √ How do we compare Lambertian and BRDF results
 - √ Implement BRDF model in operational code
- Increased convergence
- Improved AOD retrievals
- Reduced scatter in XCO2 retrievals
- Consistency in albedo values between B7 and B8
- Strong correlation of albedo with scattering angle
- Little correlation between BRDF weight and scattering angle

Backup Slides

OCO-2 Science Viewing Modes

Nadir Observations:

- + Small footprint (< 3 km²)
- Low Signal/Noise over dark surfaces (ocean, ice)

Glint Observations:

- + Improves Signal/Noise over oceans
- More cloud interference

Target Observations:

 Validation over ground based FTS sites, field campaigns, other targets

